

Single Rail SMPS

Switching power supply for audio applications

Features

- 110VAC / 240VAC Input (Selectable)
- Standby input
- 3 AUX output
- DC Error input
- Amp enable output
- Delay output
- Onboard standby power supply
- 17.5CM * 12.5CM * 5CM

Typical applications

- * Professional audio systems
- * Consumer audio products
- * HiFi audio systems

Highlights

- * High reliability
- * High efficiency
- * Low EMI signature

Sheet : 1862020 Revision 1.1.0

DATASHET

SMPS630-SO

Safety Warning

The **SMPS630-SO** operates at mains voltage and carries hazardous voltages up to **345VDC** at accessible parts. These parts may never be exposed to inadvertent touch.

Observe extreme care during installation and never touch any part of the unit while it is connected to the mains. Disconnect the unit from the mains and allow all capacitors to discharge for **5 minutes** before handling it.

IMPROPER HANDLING MAY RESULT IN PERSONAL INJURY

Ignoring the safety warning may lead to a nasty surprise on later stage!

Introduction

The SMPS630-SO is an **unregulated** high efficiency switch mode power supply specifically designed for audio applications, were high system reliability is a required feature.

SMPS630-SO also features an advanced over current protection & thermal protection, AC-Line loss detection to immediately stop the SMPS once disconnected from the AC-LINE.

This SMPS is the result of countless hours of design, development, testing for each circuit to combine one reliable product.

Detailed description of specifications

- Unregulated SMPS.
- Selectable input voltage range (110 VAC / 240 VAC).
- Multiple output voltage range (+30 VDC ~ +95 VDC). Single or dual. NOTE-1
- Standby switch input eliminates the need for mechanical switches.
- Onboard standby power supply with two outputs (+12VDC & +3.3VDC).
- Amplifier enable output (OPTO Isolated).
- DC Error input.
- Regulated AUX output +-5 VDC ~ +-18 VDC.
- IDC connector can select regulated or unregulated AUX voltage via jumpers.
- Bootstrap VDR supply output +12VDC ~ +18VDC (Completely isolated output) should be tied to –HV in class-d amplifier applications.
- AC-Line loss detection

NOTE-1:

Output voltage is set by transformer selection; a list of available voltages are mentioned later.

General Performance Data

Parameter	Symbol	Min	Тур	Max	Unit	Note-1	Note-2
Input voltage 110V	VAC_range_lo	110	120	135	V_Ac		
Input voltage 230V	VAC_range_hi	220	230	250	V_Ac		
Input frequency		47	50	63	Hz		
Switching frequency	F sw	*	65	*	K _{hz}		
0 1 7	_						
Output voltage main	V_main output	40		84	VDC	Unregulated	Based on order
					•		For +55VDC as
Output current (Continous)	I_main output	10	12	13	ADC		example
Output current (Peak)	IPK_main output	*	*	12	Adc		
Output power main	Pout	*	600	*	W		
							Based on output
Over current triggers @	OCP_trigger	*	14	16	Add		voltage
Thermal trigger	TH_trigger	*	70	75	С		
Output voltage (12V)	VAux1_reg	12	12	12	Vdc	Regulated	
AUX_1 output current	I_Aux1	*	75	150	mА		
Output voltage (3.3V)	VAux2_reg	3.3	3.3	3.3	VDC	Regulated	
AUX_2 output current	I_Aux2	*	50	75	mA		
Output voltage (+-15V)	VAux3_reg	5	*	18	VDC	Regulated	Based on order
AUX 3 output current	I Aux3		100	125	mA		
Output voltage (VDR)	– VDR reg	12	*	18	VDC	Regulated	Based on order
VDR output current			100	250	mA	U	
			100	250			
In-rush current	2.5R NTC			*	А	TBD	
Efficiency	Full power	*	*	*	%	TBD	
Idle Losses	SMPS not loaded	*	*	*	W	TBD	SMPS is ON
Stand-by loss		*	*	*	W	TBD	SMPS in Stand By

Connector Pinouts 1/3

AUX1 12V (Standby power supply output - 1)						
Connector	Pin number	Туре	Function	Notes		
12V	+	Output	+12VDC	Positive rail		
12V	G	GND	GND	GND rail		
	AU	<mark>(2 3.3V (Sta</mark>	<mark>ndby power s</mark>	upply output - 2)		
Connector	Pin number	Туре	Function	Notes		
3.3V	+	Output	+3.3VDC	Positive rail		
3.3V	G	GND	GND	GND rail (Shared with output - 1)		
		AUX3 +-	15V (Regulate	ed output)		
Connector	Pin number	Туре	Function	Notes		
+-15	+	Output	+15VDC	Positive rail (Regulated)		
+-15	G	GND	GND	GND		
+-15	-	Output	-15VDC	Negative rail (Regulated)		
			Standby			
Connector	Pin number	Туре	Function	Notes		
Standby	BORD B F WORDS	Input	Standby	Standby input trigger		
Standby	G	GND	GND	GND		
			DC-Error			
Connector	Pin number	Туре	Function	Notes		
DC-Error	Т	Input	DC Error	DC Error trigger input		
DC-Error	G	GND	GND	GND		
		Delay o	out (Isolated o	utput)		
Connector	Pin number	Туре	Function	Notes		
Delay-out	C	Output	Collector	Open collector output		
Delay-out	E	Output	Emitter	Open collector output		

The 12V & the 3.3V outputs

Those outputs are coming directly from the standby power supply, and they reflect what voltage they provide.

The standby power supply will remain ON as long as the module is connected to your power line, switching the main SMPS on /off will NOT affect the standby power supply operation at all. The 12V output can be used for the FAN, and the 3.3V is usually used to feed microcontroller circuits with power. Polarity of each pin is marked on the PCB.

The +-15V output

This output is the auxiliary regulated output of the SMPS, and its output voltage is determined by the installed voltage regulators. And can be anywhere from +-12VDC up to +-18VDC. This output is protected with fuse resistors.

The Standby input

This connector is where you will connect the switch that controls the SMPS on/off operation, shorting this connector will put the SMPS into RUN MODE opening this connector pins will put the SMPS into **STANDBY** mode. Latching switch is needed.

A latching switch is a switch that maintains its state after being activated. A push-to-make, push-to-break

(SEE NEXT PAGE ON HOW TO WIRE THE SWITCH WITH LED)

Example:- http://www.ulincos.com/product.php?id=55

The DC-Error input

In the event of a critical failure occurring in the connected amplifier, the SMPS630 needs to be switched off immediately. Once this input is triggered the SMPS will enter **PROTECT** mode and will not auto-recover. To reset the DC Error the SMPS630 must be disconnected from mains for at least 5 minutes to allow the primary capacitors to drain. Shorting the pins of this input will put the SMPS630 into **PROTECT** mode.

The Delay out (Output 1)

This is an open collector output controlled by a turn on delay circuit that will close the transistor after 3 seconds from the full operation of the SMPS, so time starts counting AFTER the SMPS is fully operational, and it will turn off immediately if you disconnect the SMPS from the AC-LINE or putting the SMPS into standby mode. The idea behind this is to control an existing circuit like turn on delay circuit or any other circuit, so you guarantee that your speakers are not connected to the amplifier if the SMPS is not functional for some reason, and will immediately disconnect your speakers once you switch off the SMPS, transistor pins are marked on the PCB (E = Emitter & C = Collector).

* External circuit needed to perform the speaker protection

This output is isolated (opt isolator) none of the transistor pins are referenced to the SMPS.

Example picture showing the output

2 Cathode

Below is the wiring for the standby switch, with switches comes with LED inside.

You can use a switch without LED, it will work.

Mains AC - INPUT Connector & Voltage selector connector

Connector (J1) is the AC input connector from your mains, 110VAC or 240VAC

Connector (J2) is the voltage selector connector, see status below (J2) OPEN = 240VAC Operation (J2) CLOSED = 110VAC Operation

Connector Pinouts 2/3

Connector J3						
Connector	Pin number	Туре	Function	Notes		
J3	1	Output	Positive Output	Selectable Output (VAUX / UNREG,REG)		
J3	2	Output	Negative Output	Selectable Output (VAUX / UNREG,REG)		
J3	3	GND	GND	Ground		
J3	4	NC	NC	Do not connect		
J3	5	Output	Emitter	Amplifier enable (Opto isolated) E		
J3	6	Output	Collector	Amplifier enable (Opto isolated) C		
J3	7	NC	NC	Do not connect		
J3	8	NC	NC	Do not connect		
J3	9	GND	GND	Ground		
J3	10	Input	DC-Error	DC-Error trigger input		

Jumpers JP1 & JP2 description

Jumper Setting (VAUX Regulated or Unregulated)

JP1 (Negative rail **Pin2 J3.2**) and JP2 (Positive rail on **Pin1 J3.1**) are used to select the output voltage on pin J3.1 and J3.2, two options are possible

- Position 1-2: Unregulated VAUX
- Position 2-3: Regulated VAUX

Unregulated situation

For example, shorting pin1 with pin2 on JP1 will give you -25VDC on Pin2 of J3 For example, shorting pin1 with pin2 on JP2 will give you +25VDC on Pin1 of J3

Regulated situation

For example, shorting pin2 with pin3 on JP1 will give you -15VDC on Pin2 of J3 For example, shorting pin2 with pin3 on JP2 will give you +15VDC on Pin1 of J3

As shown in the picture, JP1 is marked as NEG = Negative rail And JP2 is marked as POS = Positive rail

→ WARNING: This connector CANNOT be used with the PURIFI amplifier (I2C, J2), and it is not compatible with that connector, the connector is marked in the PURIFI as (I2C, J2),
→ This is not a plug and play connector for Purifi amplifier.

Connector Pinouts 3/3

1

N

ω

4

5 6

Connector (J6)

J6 - Main output connector

J6					
Connector	Pin number	Туре	Function	Notes	
JO1	1	Output	+	Positive supply rail	
J01	2	Output	+	Positive supply rail	
JO1	3	GND	GND	Ground	
JO1	4	GND	GND	Ground	
J01	5	Output	VDR-	Negative bootstrap driver voltage	
J01	6	Output	VDR+	Positive bootstrap driver voltage	

Bootstrap Driver Voltage (VDR)

The SMPS630-SO provides a regulated Bootstrap Driver Voltage (VDR) which is used to power the driver circuit of any Class-D amplifier. Most amplifier modules need the VDR voltage referenced to the negative supply rail (HV-). In order to achieve this, the VDR- should be connected to the main negative supply rail (HV-) at the amplifier side. The VDR+ must be connected to the amplifier VDR supply input.

The Bootstrap Driver Voltage (VDR) can be specified at the order time 12V , 15V, 18V. The Bootstrap Driver Voltage (VDR) is an isolated output from all other outputs.

Additional DC output, in parallel with J6

Thermal consideration

The SMPS630-SO will heat in idle (**RUN MODE**) and it may hit 55C in hot environments, therefore the FAN Output is there to be used, disabling the FAN will decrease the life of the components in the power supply. However, the SMPS will run without any issues without the FAN, but it is recommended to enable the FAN.

The SMPS630-SO thermal protection is set at 70C, and this value cannot be changed without modification of the SMPS. If the SMPS enters thermal protection you must use the FAN in that case.

Power supply bus pumping

The SMPS630-SO is an unregulated SMPS, therefore bus pumping will occur when used with Class-d amplifiers ONLY There are two possible solutions to overcome this issue.

- 1- Use extra capacitance at the output of the SMPS
- 2- Operate your amplifiers in out of phase configuration, in stereo mode.

ELNA 10000uF 80V 35mm * 50mm

Extra capacitance PCB, accepts capacitors from 25mm up to 35mm

A good starting point is minimum 4700uf per rail and up to 15000uF

→ Warning : The maximum output capacitance the SMPS can accept is 15000uF.

<u>NOTE-1 :</u>

Empty PCBs for extra capacitors are available, please check availability based on your requirements.

Quality of components used

We only use the highest quality components into all the SMPS units we produce.

What you see in the picture is what you will get, you will get more than what you pay for.

We are not showing high grade components in the pictures and send you cheap chines parts like other SMPS manufactures do.

Our prices are better than others, we offer more features into our products with great technical support.

Our standard product line uses high grade parts, our custom versions uses higher grade parts based on customer request.

Technical Support

Technical support is more important than the product itself, we believe that a product without technical support Is a dead product.

Our SMPS units are covered with 12 months warranty from the date of purchase.

All SMPS we produce can be fixed in case of any problem. As they are not made to be sent to trash if they fail like other manufactures do, we don't ask the customer to send the unit back to fix it and waste your valuable time.

Additional EMI / RFI noise filter

Using additional EMI / RFI noise filter is up to you, the SMPS has its own EMI / RFI noise filter , using additional filtering will not harm the installation.

→ Use only EMI / RFI noise filter from trusted manufacturers, don't use any cheap chines EMI / RFI noise filters.

How the protection system works?

SMPS630-SO uses perfect & efficient protection system to protect the SMPS case of any over current or short circuit event.

For example, in short circuit event the SMPS will immediately go into shutdown mode, this mechanism will protect the SMPS section from any failure.

The over current trip point will NOT be activated if the SMPS drawing the PEAK current for short period of time (maximum 3 seconds) in addition to the hold up time needed, that was another thing to consider in case of peak pulses for short periods. The hold up time is the time needed to fill the over current circuit tank to the calculated threshold, then tripping the SMPS.

In music reproduction drawing the peak current is NOT enough to charge the over current circuit tank to the calculated threshold, unless there was high current draw to activate the protection circuit.

So, to show an example on that

The SMPS can deliver its peak output current for short periods (3 Seconds Max), while not hitting the point where the over current threshold is set, hitting the threshold will immediately trip the protection circuit. That means you can draw the peak current in music reproduction use if you don't hit the trip point.

Again, there is a hold up time between the PEAK and the THRESHOLD then trip the protection circuit.

And in a short circuit event, the protection circuit will be activated in milli seconds.

Why the over current detection is made as LATCH not auto recover?

The decision was made to use the LATCH method because a 600W power supply gives 50% extra head room means it is being used hard, the LATCH method was the best option to protect the SMPS in case of over current or short circuit event.

Protection	Trip point	Notes	
Over current	14A	Latch	
Thermal	70C	Auto Re-start	
Short circuit	*	Latch	
DC-Error trigger	*	Latch	

Function of protection

Disclaimer

All products, product specifications and data are subject to change without notice.

MicroAudio, all persons acting on its or their behalf (collectively, "MicroAudio"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

This module is designed for use in music reproduction equipment only. No representations are made as to fitness for other uses.

Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer end product.

<u>LIFE SUPPORT POLICY</u>: Use of MicroAudio products in life support equipment or equipment whose failure can reasonably be expected to result in injury or death is not permitted.