

SMPS1K-SN DATA SHEET

Switching power supply for audio applications

Features

- 100VAC ~ 250VAC Input (PFC)
- Standby control input
- Amp enable output
- Trigger control
- Onboard standby power supply
- 22CM * 14CM * 6CM
- 0.3W Power consumption in standby

Typical applications

- * Professional audio systems
- * Consumer audio products
- * HiFi audio systems

Highlights

- * High reliability
- * High efficiency
- * Low EMI signature
- * Power factor corrector

Safety compliance

The SMPS1K-SN is safety tested according to the following standard:

• EN 62368-1:2020+A11:2020

Certificate number ET-24070856SC

Safety Warning

The SMPS1K-SN operates at mains voltage and carries hazardous voltages up to 420VDC at accessible parts. These parts may never be exposed to inadvertent touch.

Observe extreme care during installation and never touch any part of the unit while it is connected to the mains. Disconnect the unit from the mains and allow all capacitors to discharge for 15 minutes before handling it.

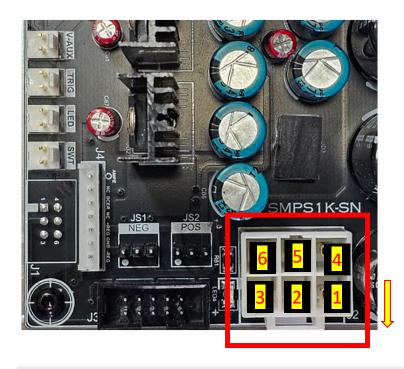
IMPROPER HANDLING MAY RESULT IN PERSONAL INJURY

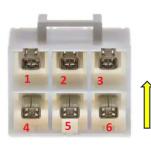
Ignoring the safety warning may lead to a nasty surprise on later stage!

Introduction

The SMPS1K-SN is a high efficiency **Safety Class 2 unregulated** high efficiency switch mode power supply specifically designed for audio applications, where high system reliability is a required feature.

The SMPS1K-SN is a SMPS with power factor corrector front end, excellent PFC regulation guarantees low voltage drop at the output across the entire load curve.


SMPS1K-SN also features an advanced over current protection & thermal protection, AC-Line loss detection to immediately stop the SMPS once disconnected from the AC-LINE.


This SMPS is the result of countless hours of design, development, testing for each circuit to combine one reliable product.

Detailed description of specifications

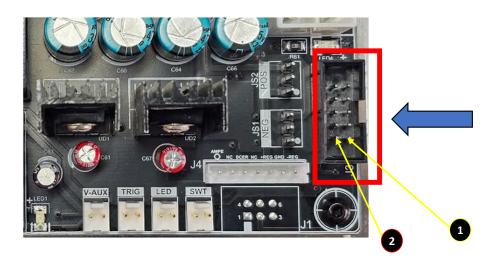
- Active power factor corrector.
- Unregulated SMPS.
- Wide input voltage range (100 VAC ~ 250 VAC).
- Standby control switch input eliminates the need for mechanical switches.
- Trigger input.
- Onboard standby power supply (+12VDC or +5V 3W) Always ON.
- AC-Line loss detection
- Synchronous rectifier
- Wide output voltage range selection, +-40, +-46, +-50,+-50,+-60,+-64,+-70,+-75...+-110
- Customizable to OEM specifications

Connector Pinouts J2

 _

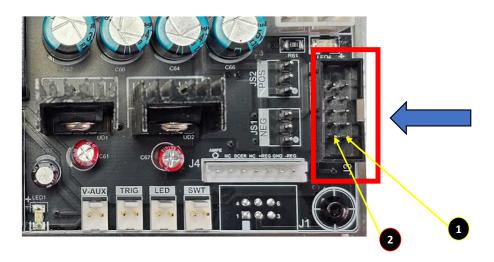
Connector	Pin number	Туре	Function	Notes
J2.1	1	Output	VDR+	Positive bootstrap driver voltage
J2.2	2	Output	HV+	Positive supply rail
J2.3	3	GND	GND	Ground
J2.4	4	Output	VDR-	Negative bootstrap driver voltage
J2.5	5	Output	HV-	Negative supply rail
J2.5	6	GND	GND	Ground

Bootstrap Driver Voltage (VDR)


The SMPS1K-PFC provides a regulated Bootstrap Driver Voltage (VDR) which is used to power the driver circuit of any Class-D amplifier. Most amplifier modules need the VDR voltage referenced to the negative supply rail (HV-).

To achieve this, the VDR- should be connected to the main negative supply rail (HV-) at the amplifier side. The VDR+ must be connected to the amplifier VDR supply input. The Bootstrap Driver Voltage (VDR) can be specified at the order time 12V , 15V, 18V. The Bootstrap Driver Voltage (VDR) is an isolated output from all other outputs.

Connector type equivalent: B06P-VL. Matching cable part: VLP-06V.

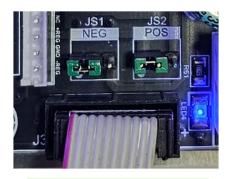

Connector Pinouts J3

Connector J3								
Connector	Pin number	Туре	Function	Notes				
J3.1	1	Output	Positive Output	Select able Output (VAUX / UNREG,REG)				
J3.2	2	Output	Negative Output	Délectable Output (VAUX / UNREG,REG)				
J3.3	3	GND	GND	Ground				
J3.4	4	NC	NC	Do not connect				
J3.5	5	Output	Emitter	Amplifier enable (Opto isolated) E				
J3.6	6	Output	Collector	Amplifier enable (Opto isolated) C				
J3.7	7	NC	NC	Do not connect				
J3.8	8	NC	NC	Do not connect				
J3.9	9	GND	GND	Ground				
J3.10	10	Input	DC-Error	DC-Error trigger input				

Connector type equivalent: **2510-6002UB**. Matching cable part: **89110-0101HA** .

Connector Pinouts JS1 & JS2

Jumpers JS1 & JS2 description


Jumper Setting (VAUX Regulated or Unregulated)
Jumpers JS1 & JS2 settings will reflect the output voltage at J3

JS1 (Negative rail Pin2 J3.2) and JS2 (Positive rail on Pin1 J3.1) are used to select the output voltage on pin J3.1 and J3.2, two options are possible

Position 2-3: Unregulated VAUXPosition 1-2: Regulated VAUX

Unregulated VAUX Selected

Regulated VAUX Selected

 $Connector\ type\ equivalent:\ \textbf{90120-0122}.$

Shunt part: **0015381024** .

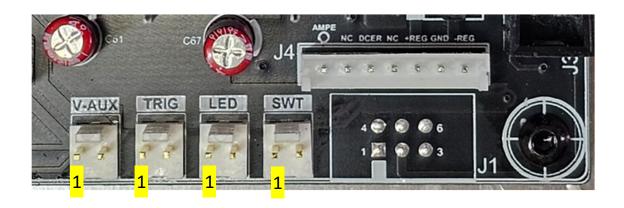
Connector Pinouts J4

J4

Connector	Pin number	Type	Function	Notes
J4.1	1	Output	AMPON	Amplifier enable
J4.2	2	NC	NC	Do not connect
J4.3	3	Input	DCER	DC Error input
J4.4	4	NC	NC	Do not connect
J4.5	5	Output	Positive Output	REGULATED output Subject to the selected VAUX regulators
J4.6	6	GND	Ground	
J4.7	7	Output	Negative Output	REGULATED output Subject to the selected VAUX regulators

Connector type equivalent: B7B-EH-A(LF)(SN).

Matching cable part: **EHR-7**.

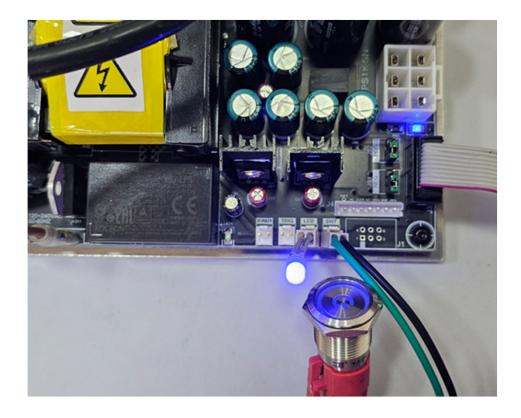


Black 22 AWG Jumper Lead Socket to Socket Tin 12.0"

(304.8mm) pat: ASEHSEH22K305

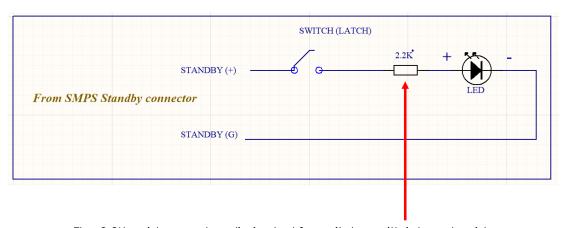
SMPS1k2-SN

Connector Pinouts



V-AUX connector									
Connector	Pin number	Type	Function	Notes					
V-AUX	1	GND	GND	Ground					
V-AUX	2	Output	+12 / +5 VDC	Positive rail					
	SWT connector								
Connector	Pin number	Type	Function	Notes					
SWT	1	Input	Standby	Standby input control					
SWT	2	GND	GND	GND					
		TRI	G connec	tor					
Connector	Pin number	Type	Function	Notes					
TRIG	2	Input	Trigger	Trigger input from 8V ~ 12V					
TRIG	1	GND	GND	GND (Of the 8 $^{\sim}$ 12V trigger)					
LED connector									
Connector	Pin number	Type	Function	Notes					
LED OUT	1	Output	-	LED - output					
LED OUT	2	Output	+	LED+ output					

General Performance Data


Parameter	Symbol	Min	Тур	Max	Unit	Note-1	Note-2
Input voltage	VAC_range_lo	100	*	250	V_Ac		
Input frequency		47	50	63	Hz		
Switching frequency	F_sw	*	65	*	K _{hz}		
Output voltage main	V_main output	+/-40		+/-100	V_{DC}	Unregulated	Selectable
Output current (Continous)	I_main output	*	4	*	A_{DC}		
Output current (Peak)	IPK_main output	*	*	13	A_{DC}	15A Limit @ 240VAC	10A Limit @ 100V AC
Output power main	Pout	*	350	1500	W		
Over current triggers @	OCP_trigger	*	14	16	ADC		
Thermal trigger	TH_trigger	*	70	75	С		
Output voltage (12V)	VAux1_reg	11.7	11.8	12.3	V_{DC}	Regulated	
In-rush current	5R NTC	15	18 90	30	A %		
Efficiency Idle Losses	Full power SMPS not loaded	87 *	90 7.5	91 10	% W		SMPS is ON
Stand-by loss	o o not loaded	0.09	0.1	0.250	W		SMPS in Stand By

Connection example 1

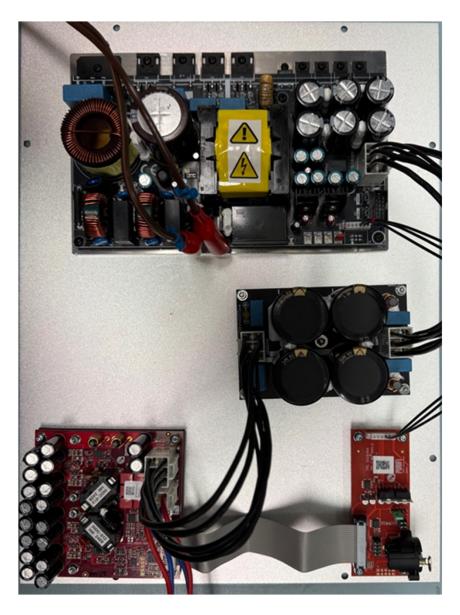
In this example the SMPS control is done via low current control switch with LED inside the switch.

Connection is done via two wires only for the LED & the switch.

The 2.2K resistor can be eliminated for switches with internal resistor.

Connection example 2

In this example the SMPS control is disabled and the SMPS is ALWAYS ON.


And the SMPS power up is done by applying the AC voltage directly.

Setup example 1

Fully assembled amplifier

Setup example 2

SMPS1K-SN with extra capacitors PCB driving the Purifi EVAL-4

In the above example the DC-ERROR & AMPON is NOT connected for testing purposes

General notes

SMPS1K-SN is pin to pin compatible with the Purifi EVAL-4 Plug and play solution

Disclaimer

All products, product specifications and data are subject to change without notice.

MicroAudio Electronics, all persons acting on its or their behalf (collectively, "MicroAudio Electronics"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

This subassembly is designed for use in music reproduction equipment only. No representations are made as to fitness for other uses. Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product. Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product.

<u>LIFE SUPPORT POLICY</u>: Use of MicroAudio products in life support equipment or equipment whose failure can reasonably be expected to result in injury or death is not permitted.